- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Babuji, Yadu (1)
-
Chard, Kyle (1)
-
Dasso, TJ (1)
-
Foster, Ian (1)
-
Li, Zhuozhao (1)
-
Shaffer, Tim (1)
-
Surma, Zoe (1)
-
Thain, Douglas (1)
-
Tovar, Ben (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Python has become a widely used programming language for research, not only for small one-off analyses, but also for complex application pipelines running at supercomputer- scale. Modern parallel programming frameworks for Python present users with a more granular unit of management than traditional Unix processes and batch submissions: the Python function. We review the challenges involved in running native Python functions at scale, and present techniques for dynamically determining a minimal set of dependencies and for assembling a lightweight function monitor (LFM) that captures the software environment and manages resources at the granularity of single functions. We evaluate these techniques in a range of environ- ments, from campus cluster to supercomputer, and show that our advanced dependency management planning and dynamic re- source management methods provide superior performance and utilization relative to coarser-grained management approaches, achieving several-fold decrease in execution time for several large Python applications.more » « less
An official website of the United States government
